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DIRECT TRANSFORMATION OF VARIATIONAL PROBLEMS fl
INTO CAUCHY SYSTEMS. I. SCALAR-QUADRATIC CASE* U FEB 2 1918
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ABSTRACT: This series of papers addresses three interrelated problems:

the solution of a vari ationa l minimization problem, the solution of

i ntegral equations, and the solution of an initial valued system of

integrodifferential equations. It will be shown that a large class

of minimization problems requires the solution of linear Fredholm

integral equation3. It has also been shown that the solution of a

linear Fredholm integra l equation is identical to the solution of a

Cauchy system. In this paper, we by-pass the Fredholm integral equations

and show that the minimi zation problem directly implies a solution of

a Cauchy system. This first paper In the series looks only at quadratic

functionals and scalar functions.
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1. INTRODUCTION

Many interesting optimi zation problems result in variational problems

of finding a function z(t), 0 < t 1 , that minimizes the functional

W[z] = A f ~ 4 z(s)k(t,s)z(t)dtds + 4 z(t)~dt + 2 4 f(t)z(t)dt.
By standard variational techniques it can be shown that the optimal func-

tion, u(t), satisfies a linear Fredholm inteqral equation (Ref. 1). Recent

work in the study of integral equations (Ref. 2) has shown that solutions

of integral equatio~is are equivalent to solutions of particular Initial

valued systems of integrodifferential equations (Cauchy systems). It

appears that the three problems -- variational , integral equations , and

Cauchy systems -- are equi valent to each other. An important missing link

in the analysis has been the demonstration that the variational problem

leads directly to a Cauchy system without passing through an integral equa-

tion. These papers provide that link, it would seem that the historical

emphasis put on the Integral equations is but an accident. The Cauchy

systems can just as easily be developed and provide interesting insights

and computational aid in studying such variational problems.

The direct reduction of the simplest problem In the calcul us of

variations to a Cauchy system Is given in Ref. 3; the train of thought

is quite different from that employed here.

2. DERIVATION

Suppose we desire to find a Scalar function z(t), 0 ~ t ~ 1 , which

minimi zes the quadratic functional
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W[ z ,A] = 4 z(s)k(t,s)z(t)dsdt + 4 z(t)~dt + 2 4 f(t)z(t)dt, (1)

where k(t ,s) is a syninetric, positive definite kernel , f(t) is a given

function, and A is a sufficiently small nonnegative scalar parameter. The

standard variational approach to this problem results in a linea r Fredhoim

integral equation which the optima l function must satisfy.

PROPOSITiON 1: The function u(t) which minimizes W [u,x] must satisf~y

the linear Fredhoim integra l equation

u(t) + f(t) + A 4 k(t,s)u(s)ds = 0, 0 < t < 1. (2)

PROOF: Denote the optimal function u(t). The arbitrary admissable

functions may be written as

w( t) = u(t) + ~r~( t),  -

where c is an arbitrary scalar, and n(t) is an arbitrary function.

The value of the functiona l for w( t) may be expressed as

W [w;A] = W[u,A] + cC[u,r,;AJ + c 2D[r~;A],

where

2 A 4 4 u(s)k(t,s)n(t)dsdt + 2 4 u(t)n(t)dt + 2 4 f(t)n(t)dt
D[~,A] = A 4 r,(s)k(t,s)n(t)dsdt + 4 n(t)2dt.
For e sufficiently small the term in may be ignored. If u is in

fact the minimizing solutlon,then for all ~I
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C[u,n;A] 0. (3)

Applying the fundamental lenina of the calculus of variations

(4 g(t)h(t)dt = 0 for arbitra ry h(t) implies g(t) = 0 for all

0 < t < 1 (Ref . 1)) to Eq. (3), since ~(t) Is arbitrary, we get

Eq. (2) , Q.E.D.

Another aoproach to the minimization problem is to ask how the optimal

solution chanqes as A varies. This Is referred to as parametric intedding.

The standard technique woul d begin with the linear Fredholm Integral equa-

tion and convert it into a system of initial valued integro-differentlal

equations. The basic result given in Ref. 2 is

PROPOSITION 2: The function u(t,A ) which satisfies the linea r Fredholm

Integral Equation (2) is the solution u(t,x) to the following initial

valued integro—differential equations in u, augmented by a resolvent

kernel K( t,s,A), and conversely:

O u
~
(t,A) + ~(t,A ) + 4 K(t,s,A )q,(s,A)ds (4)

KA (t,s.A) = f ~, K(t,s ’,A )K( s ’,s,A)ds ’ (5)

u(t,0) = —f(t) (6)

K(t ,s ,O) • —k(t,s) (7)

*(t,s) 4 k( t,s)u(s,A)dA (8)

O < t < l , 0 < s < l .  (9)

V ~~~~~~~~~~~ IV.— -- — - - V - - — - •~~~•V~~~ •
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The Cauchy system (4)-(9) has proved to be very useful for the

computation of the solution of Fredholm integral equations , as we ll as

for the study of the sensitivity of the solution to changes in the para-

meter A.

We will now show that the Cauchy system (4)-(9) may be derived

directly from the original minimi zation problem, without ever writing

down the Fredholm integral Equation (2). In fact, the solution of the

minimization problem could have proceded even if historically the

Fredhoim integral equation had never been discovered. The Cauchy system

is perfectly adequate for describing the optimal function u(t).

PROPOSITION 3: The function u(t,A ) which minimizes W [u;x3 satisfies

the Cauchy system (4)-(9).

PROOF: Suppose u(t,A ) is the minimizing function for parameter

value A , and suppose u(t,x+dx) is the minimizing function for

parameter va l ue A+dA ; then the first variations must satisfy the

following inequalities for arbitrary c, ~~, ~~, ~:

cC[u(t,A),n;A] .~~. 0 (10)

~C[u(t,A+dA ), ~; A+dA ] 
> 0. (11)

Since £ , n, ~, ~ are all arbitrary, pick ~ = n an d c -
~~ so that

(10) and (11) are

-~C(u(t ,A),~;A) > 0

~C(u(t ,A+th), ~; A+dA ) > 0.

—~~~~ __~ - - — V~V — ~~~~~~~~~~~~~~~~~~~~~~~~~ — — - - - -~~~ ____________
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Add these two inequalities to get

A 44(u(s~A+dA)- u(s~A )) k( t .s )~ (t)dsdt +2 4(u(t,A +dx)— u(t , A ) )~ (t)dt

+2dx 44 u (s.x+dA)k(t.s)~(t)dsdt] >0. (12)

Since ~ has arbitrary sign , the term in square brackets in (12) must

be zero. Since ~(t) is arbitrary, apply the fundamental lenina of the

calculus of variations to the bracketed term to get

2 A 4 k(t,s)(~(s,A+dA)—u(s,A))ds+2(u(t,A+dX)—u (t,A))

+2dx4 u(s,A+dx)k(t,s)ds = 0. (13)

Divide (13) ‘y 2dx and take the l imit as dA -~ 0,

O = u
~
(t,A ) +A4 k(t,s)uA (s ,A)ds + 4 k(t,s)u(s,A)ds. (14)

This is a Fredhoim integral equation with kernel k(t,s). Corresponding

to k(t,s) is a resolvent kernel K(t,s A ) such that solutions of

Fredholm integral equations

O = v( t) + p(t, x) + A 4 k(t,s)v(s)ds (15)

can be expressed as

O v(t) + ~j,(t,A ) + x 4 K(t, s,A)js (x ,A)ds .

Using the resolvent kernel to express the solution of (14) , where

f~, k(t,s)u(s,A )ds, we get

O a uA (t,A) 
-t ~(t,A) ÷ A t~ ~(t,S,A)q,(S,A)dS.

_ _  

___ _  _  

a
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This is nothing other than Eq. (4) of the Cauchy system. The resol-

vent kernel must itself satisfy a Fredhoim integral equation

O = K(t,s,A ) + k(t,s) + A 4 k(t,s’)K(s ’,s,A)ds ’. (16)

Differentiate (16) with respect to A to get

0 = K
~
(t
~
s,A ) + 4 k(t,s’)K(s ’,s, )ds ’ + A 4 k(t,s’)K~(s ’,s,A)ds.

(17)

From Eq. (16) we can reexpress the second term of (17):

O = KA (t,s,A) 
— 

~
- (K(t,s,A ) + k(t,s)) + A 4 k(t,s’)KA (s ’,s,A )ds ’.

(18)

However , Eq. (18) is a Fredholm integral equation with the same ker-

nel as Eq. (15~. Its solution may be expressed using the same resol-

vent kernel K(t,s,A ),

0 = KA (t,s,A) 
— 4,~- (K(t,s,A ) — k(t,s)) + A 4 K( t,s,A)

-(f)(K(s’.s~A ) + k(s’,s)) ds ’. (19)

Using Eq. (16) again , several terms in Eq. (19) cancel out, leaving

KA (t,s,A) 
= 4 K(t,s’,A)K(s’,s,A)ds ’

which is just Eq. (5) of the Cauchy system. To get the initial con-

ditlons (7), set A a 0 in Eq. (16). To get initial condition (6)

set A 0 In WEz,A). The minimizing function u(t,O) of

4 u(t ,0)2dt + 2 4 f(t)u(t.O)dt
V 

can easily be shown to be u(t,O) f(t). Q.E.D.

_____________ — -- V. - — VV - - — -~~~~~
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3. DISCUS SION

The main purpose of this paper has been to reduce the quadratic

variational problem in Eq. (1) to the Cauchy system in relations (4)—(9).

In particular we have been able to do this without making any use of the

Euler equation, which takes the form of the Fredhoim integral equation

(2).

Subsequent papers in this series will be devoted to systems and to

the treatment of non-quadratic variational problems. Application to team

decision theory and other areas will be presented.

4

V.
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